Prediction and Characterization of Missing Proteomic Data in Desulfovibrio vulgaris

نویسندگان

  • Feng Li
  • Lei Nie
  • Gang Wu
  • Jianjun Qiao
  • Weiwen Zhang
چکیده

Proteomic datasets are often incomplete due to identification range and sensitivity issues. It becomes important to develop methodologies to estimate missing proteomic data, allowing better interpretation of proteomic datasets and metabolic mechanisms underlying complex biological systems. In this study, we applied an artificial neural network to approximate the relationships between cognate transcriptomic and proteomic datasets of Desulfovibrio vulgaris, and to predict protein abundance for the proteins not experimentally detected, based on several relevant predictors, such as mRNA abundance, cellular role and triple codon counts. The results showed that the coefficients of determination for the trained neural network models ranged from 0.47 to 0.68, providing better modeling than several previous regression models. The validity of the trained neural network model was evaluated using biological information (i.e. operons). To seek understanding of mechanisms causing missing proteomic data, we used a multivariate logistic regression analysis and the result suggested that some key factors, such as protein instability index, aliphatic index, mRNA abundance, effective number of codons (N(c)) and codon adaptation index (CAI) values may be ascribed to whether a given expressed protein can be detected. In addition, we demonstrated that biological interpretation can be improved by use of imputed proteomic datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: a non-linear model to predict abundance of undetected proteins

MOTIVATION Gene expression profiling technologies can generally produce mRNA abundance data for all genes in a genome. A dearth of proteomic data persists because identification range and sensitivity of proteomic measurements lag behind those of transcriptomic measurements. Using partial proteomic data, it is likely that integrative transcriptomic and proteomic analysis may introduce significan...

متن کامل

Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

Hypothetical (HyP) and conserved HyP genes account for >30% of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved HyP (9.5%) along with 887 HyP genes (24.4%). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to d...

متن کامل

Response of Desulfovibrio vulgaris to alkaline stress.

The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently contr...

متن کامل

Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.

The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of exi...

متن کامل

High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of <italic>Desulfovibrio vulgaris</italic>

Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011